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Abstract. Swift heavy ions interact with electrons in materials and this may yield permanent atomic
displacements; the energy transfer mechanisms that bring electronic excitations into atomic motion are
not fully understood, and are generally discussed in terms of two theories, viz. Coulomb explosion and heat
exchange between excited electrons and atoms, which is limited by electron-phonon coupling. We address
this problem for a “generic” material using a semi-classical numerical approach where the dynamics of
the evolving electron density is calculated by using molecular dynamics simulations applied to pseudo-
electrons. The forces exerted on the nuclei are then used to calculated the trajectories of the nuclei. From
the temporal evolution of the atomic kinetic energy, we find that the energy transfer between the electrons
and the nuclei can be divided in two parts. First, a Coulomb heating starts the motion of the atoms
by giving them a radial speed; this process differs from Coulomb explosion because the atoms are not
displaced over interatomic distances. Second, a thermal energy transfer, as described in linear transport
theory, takes place. Our study thus confirms the domination of thermal energy exchange mechanisms over
Coulomb explosion models.

PACS. 61.80.Az Theory and models of radiation effects – 63.20.kd Phonon-electron interactions

1 Introduction

In the study of the interactions of ions with matter, two
energy regimes are of interest: slow ions (E < keV/amu),
where the interactions essentially consist of binary colli-
sions between the projectiles and the target atoms, and
fast, or “swift”, ions (E ∼ MeV/amu), where the interac-
tions initially proceed by the excitation of the electrons,
which eventually transfer their energy to the lattice. In
both cases, significant damage can result, ranging from
simple point defects to extended amorphous tracks [1–4].

A full theoretical understanding of the energy transfer
processes during the swift heavy ion irradiation of solid
materials is far from having been achieved. The ions are
slowed down so violently that they deposit keV’s of en-
ergy per nm along their trajectories [5]. In this regime,
the cross-section for atomic collisions (which can lead to
collisions cascades) is so small that they can be ignored
and the ions are slowed down mostly by interactions with
electrons in the solid [4]. Thus the target contains a large
local density of highly excited electrons, with some form
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of cylindrical symmetry reflecting the shape of the ion tra-
jectories. These excited electrons transfer their energy to
the atoms making up the solid target; how fast, how local-
ized, and by which mechanism the energy transfer takes
place remains far from being fully understood.

At least two radically different energy transfer mech-
anisms have been proposed [6–8], and these are not mu-
tually exclusive as they may take place on different time
windows. One is “Coulomb explosion”: a region along the
centre of the ion trajectory becomes partly or completely
denuded of electrons and, as a result, the remaining atoms
experience a Coulomb repulsion causing them to be ac-
celerated radially outward until their charges are (again)
screened by the electrons. The associated energy trans-
fer mechanism is therefore of Coulombic origin. It is not
know how fast the screening re-establishes itself, in part
because such a large fraction of the electrons is so highly
excited. The “explosion” leaves many defects behind, in-
cluding, possibly, an elongated amorphous region [9]. An-
other mechanism is sometimes referred to as the “ther-
mal spike”: the excited electrons transfer their energy by
electron-phonon coupling to the lattice atoms [4,10], and
this leads to a localized high-temperature region (and
possibly local melting along the ion track). According
to this process, the energy transfer proceeds by random
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collisions. However, electron-phonon couplings for far-
from-equilibrium systems, as is the case during swift heavy
ion irradiation, are difficult to estimate. Other theories in-
clude shock waves [11] and lattice relaxation [12].

The lack of understanding of these energy transfer pro-
cesses needs to be addressed, because several surprising
observations have been made on materials under swift
heavy ion irradiation. For example, amorphous materi-
als exhibit the hammering effect, whereby an irradiated
thin film becomes thinner and wider, as if each ion acts
like a little hammer [13]. Similarly, the irradiation of ma-
terials with off-axis ions can lead to lateral transport of
target surface layers in the direction of the component of
the ion velocity parallel to the sample surface [14,15]. In
many materials, the passage of swift heavy ions leaves la-
tent tracks that cannot be detected directly but can be
revealed because they are vulnerable to chemical attack
by etchants or solvents (depending on the material) [16].
And curiously, spherical metal nanoparticles embedded in
an amorphous matrix can be deformed into nano-rods,
aligned along the direction of the incident ions [17]. A
consensus has not been reached on a full explanation of
these phenomena, and an improved understanding of the
behaviour of a high density of highly excited electrons
would be very helpful. In addition, a new theoretical ap-
proach is needed to understand the damage created by
ion irradiation of substrates such as carbon nanotubes or
sheets of graphene [18] that are thinner than the radius of
the ion track in the corresponding bulk material.

A full ab initio description of any of those experimen-
tal observations is an unmanageable task for a number of
reasons. Among them, the time scales to be treated range
from the fs regime (roughly the time it takes the ion to
travel a nm) to full seconds (the time scale that can be in-
volved in point defect recombination). Also, the core elec-
trons can become excited and need to be included in the
calculations, imposing a large computational workload.

We present, in this article, the results of a numerical
study of the passage of swift ions in matter with a view of
identifying the chain of events leading to the transfer of
energy to the atoms and eventual damage to the target.
Our approach is based on classical molecular-dynamics
(MD) simulations, but the electrons are incorporated in an
ad hoc, quasi ab initio (or semi-empirical) manner. Thus,
electronic effects can be fully taken into account and the
energy transfer mechanisms need not be assumed a pri-
ori as in other approaches [4,10]. Our model is “generic”,
i.e., it does not describe a particular material, though it
eventually could. Anticipating our results, we find that the
energy transfer from the swift ions to the lattice proceeds
along two different routes: first, radial Coulomb heating,
then purely thermal processes. The present study only
considers energy transfer processes between the highly ex-
cited electrons and the atomic lattice; we have not studied
subsequent changes to the lattice (such as amorphization,
deformation, etc.) which would required MD calculations
over much longer time scales to be performed. We begin
by presenting our model and discussing the theoretical
background.

2 Model and computational details

The problem of a swift ion interacting with a material is
studied here using classical MD simulations whereby the
trajectories of all the particles in the system are followed
in time by integrating their equations of motion under
an appropriate representation of the total energy of the
system (see below) [19]. The electrons play an essential
role in the present case and therefore have to be explicitly
considered. We do this using the semi-classical approach
proposed by Mijoule et al. [20] which is based on a hydro-
dynamic formulation of quantum mechanics (Madelung
equations) [21]. The approach is properly modified to duly
take into account the boundary conditions for our partic-
ular system, viz. periodic. In summary, the atoms are as-
sumed to consist of charged nuclei (‘n’) and electrons, and
the latter are subdivided into N pseudo-electrons (PE),
each of charge e/N and mass me/N , where e and me are
the charge and the mass of one electron, respectively. The
PEs are treated in a classical manner, and their equations
of motion are followed, just as with the nuclei, using MD,
but with a much smaller time step. With this procedure,
the number of electrons can be changed at will, and the
electronic density is properly described as we will see.

The interactions between all particles, viz. n-n, n-PE,
and PE-PE, are Coulombic. For the particular case of
n-PE interactions, however, the Coulomb potential has
to be modified at short range to prevent the PEs from
collapsing onto the nuclei. This is done by introducing
a repulsive term at short distances; more specifically, the
force (which is the quantity of interest in MD simulations)
is written

fne(r) = Qq

[
2(1 + αr)e−αr − 1

r2

]
r̂. (1)

The parameter α sets the minimum of the potential en-
ergy, i.e., it fixes the size of the distribution of electrons
around the nuclei. As for the PE-PE interactions, also
Coulombic, they are smoothed using an error function to
ensure that the force between atoms is attractive:

fee =
erf(γr)

r2
r̂, (2)

where γ corresponds to the distance from which the force
becomes purely Coulombic.

Coulomb forces are long range and, because we use pe-
riodic boundary conditions, have to be handled with care.
These are normally calculated using the Ewald summation
technique. This method however is quite slow. Following
Fennell and Gezelter [22], we cut and shift the forces, in-
stead, a procedure which is equivalent to the Ewald sum-
mation for a proper choice of cutoff radius. Fennell and
Gezelter indicate that this should be larger than 9 Å [22];
we used 12 Å.

The starting point configuration of the target is con-
structed as follows. First, the atoms, which consist of a
nucleus of mass m and a single charge e (see below), are
placed on the nodes of a face-centered cubic (FCC) lat-
tice – here 10× 10× 6 unit cells –, the equilibrium struc-
ture for this model. (The lattice parameter is discussed
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Fig. 1. (Color online) Two-dimensional projection of the initial
state of the system (the lattice is FCC). Blue squares and red
circles represent the PEs and the nuclei, respectively.

below.) The PEs are then randomly distributed in the
simulation volume and a steepest-decent relaxation calcu-
lation (at 0 K) is carried out on their positions in order
to minimize the total energy of the system. A typical con-
figuration obtained in this way is illustrated in Figure 1,
where the coordinates of all particles have been folded
back into a single unit cell and projected onto the (x, y)
plane, that is normal to the direction of incidence of the
ion.

The values of the various parameters entering the
model are somewhat arbitrary and are chosen so as to
provide a qualitatively correct description of a “generic”
material. Thus, our model does not represent a particular
system – it could be extended to do this – but, rather,
is designed to possess the physical ingredients which are
essential to a proper description of the interaction of a
swift ion with matter. For the simulations described be-
low, each electron was assumed to consist of 4 PEs, which
provides a reasonable electronic density and a computa-
tionally manageable system. The distribution of electrons
can be seen in Figure 1 where “bonds” are clearly visi-
ble. Thus, even though the structure is close-packed, this
system has electronic features that can be associated to
covalent crystals or semiconductors. These characteristics
should not be taken at face value, however, and they need
not to as they are not determinant to a proper description
of the interaction of swift ions with matter at this level of
understanding and approximation.

For the other parameters, we set γ = 0.228 Å−1 and
α = 1.20 Å−1 which yield a qualitatively correct behav-
ior. With these choices, the lattice constant is found to
be 5.0 Å, which is quite appropriate for an FCC mate-
rial. The mass of the nuclei was set to 0.01 amu; this
evidently very small value is chosen to accelerate the dy-
namics of the ions. Indeed, the timescale of the problem
is largely determined by the dynamics of the electrons,
which is much faster than the nuclei’s; hence this choice is
not detrimental to our calculations but does improve ef-

ficiency considerably. To make contact with “real” units,
we note that the ion relaxation times vary roughly linearly
with the ion mass; since the mass of a typical ion would
be ∼10 amu, this means that the time is compressed by
a factor of roughly 103. In view of this, time will be ex-
pressed in what follows in units of tu, which is about 1 ps
for physically appropriate model parameters.

In order to validate our model, we calculated the po-
tential energy of an additional particle in the solid and
found that it followed very closely the predictions of the
Thomas-Fermi theory, i.e., screening is properly taken into
account. We also examined energy transport properties,
which were found to behave correctly. Energy transport
between electrons and thermal energy exchange between
species are well predicted by first-order transport theory.
Finally, we calculated the melting temperature of the sys-
tem and found it to be about 0.15 eV, i.e., ∼1800 K.

Other details of the model are as follows. As noted
earlier, the system size was set to 10 × 10 × 6 FCC unit
cells – that is 2400 atoms and 9600 PEs for a total of
12 000 MD particles – which we found is sufficiently large
to ensure converged results. We employ periodic boundary
conditions to mimic an infinite system; however, in order
to eliminate the effects of periodic images on the single
ion problem we study here, and to limit the energy fluctu-
ations at the beginning of the process, when PEs reach an
x or y boundary with an energy larger than 0.3 eV, their
energy is removed and reset to 0. The equations of motion
are integrated using the velocity Verlet algorithm with a
timestep of 10−18 s. Finally, the point of impact of the
ion is chosen to be in the middle of the simulation cell;
we have verified that the results do not depend on this
choice since there are no “head-on” collisions between the
incoming ion and the lattice nuclei, as we discuss next.

To simulate the interactions of a fast ion with the elec-
trons in the target, we have to know the way the electrons
are affected by a swift ion. The program CASP (Convo-
lution Approximation for Swift Particles), developed by
Grande and Schiwietz [23,24], gives this information for
specific ions in specific materials. CASP considers the elec-
tric field produced by a fast ion as a perturbation to the
electronic wave functions in the solid, allowing the energy
transfer to be computed as a function of the impact pa-
rameter. We used this program to obtain a general rule for
the electronic excitations, based on simulations with dif-
ferent ions on different targets. From these calculations,
we find that only external shell electrons are affected for
swift ions and that only those very near the impact trajec-
tory absorb a significant amount of energy. Typical CASP
simulations are well represented by the following Gaussian
distribution for the energy absorbed by the electrons as a
function of the radial distance ρ from the impact line:

Se(ρ) = Qe
a3

4πσ2
exp

(
− ρ2

σ2

)
, (3)

with σ = 1.7 Å. For swift ions, the electronic excita-
tions are much more important than the direct transfer
to the atoms so that Qe in effect represents the stopping
power of the incident ions. This quantity can be measured
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experimentally; it usually lies in the range 1–100 keV/nm
(102–104 eV/Å). Using this result, we set the radial speed
of the PEs to:

vρ
e (ρ) = −

√
2Se(ρ)

me
. (4)

The energy to the PEs is introduced in one shot at the be-
ginning of the simulation. This is justified by the fact that
the impact ion swiftly travels through the target. Several
values of the stopping power, from 16 to 2000 eV/Å, were
considered.

3 Theoretical background

The energy transfer mechanisms can be identified by exa-
mining the temporal evolution of the kinetic energy of
the nuclei, Kn(t); indeed, the energy gain is much faster
in the case of a Coulomb explosion than in the case of
thermal transfer. We briefly review the two mechanisms
here in order to provide an appropriate reference frame
for understanding our simulations.

According to the “thermal spike” model, the electrons
are excited by the swift ion, thermalize, and their en-
ergy is subsequently transferred to the atoms by random
collisions [4]. The kinetic energy of the nuclei therefore
evolves following linear transport theory. Considering the
electrons and the nuclei as two distinct, uniform fluids of
constant density and zero net velocity, linearly coupled
via their temperatures, the evolution of the mean temper-
atures of the two fluids is given by:

Ce
∂T e

∂t
= −G(T e − Tn),

Cn
∂Tn

∂t
= G(T e − Tn). (5)

Here, Ce and Cn are the specific heats of the two sys-
tems, T e and Tn are the temperature of the electrons and
the nuclei, respectively, and G represents the coupling be-
tween the two fluids. Under the above assumptions (uni-
form fluids, constant density and zero net velocity), the
temperatures are related to the mean kinetic energies by
Ki = CiT i. Solving those equations, it can be shown that
the mean kinetic energy of the nuclei depends exponen-
tially on time:

Kn(t) = K1 exp(−t/τne) + K2, (6)

where K1 and K2 are constants fixed by the initial con-
ditions of the two fluids, and τne is the relaxation time
for heat exchange between them, which depends on the
strength of the coupling. We may go one step further by
considering the potential energy as another fluid, repre-
senting the spatial degrees of freedom. This brings about
an additional exponential term in equation (6); we found
however that this correction is minor and that equation (6)
adequately describes the thermal processes that we simu-
late, with a relaxation time of about 13 tu.

The Coulomb explosion model is based on the fact that
electrons are ejected from the center of the impact track,
causing a net positive charge which in turn causes the
nuclei in the affected region to expel one another. As the
nuclei are displaced over several interatomic distances, the
damaged zone effectively becomes depleted. The gain in
energy of the nuclei can be calculated by considering the
impact of an electrically charged cylinder on the nuclei.
The cylinder’s linear density of charge λ decays exponen-
tially with time, with characteristic screening time τr:

λ(t) = λ0 exp(−t/τr), (7)

where λ0 is the initial charge density. From this charge
we can determine the forces acting on the nuclei, which
can be integrated numerically to yield the velocities and
energies of the nuclei. An analytical solution can also be
obtained if the displacements of the nuclei are assumed to
be small; this approximation is evidently in contradiction
with the Coulomb explosion model but will prove to be
useful later for interpreting our results. We thus find:

Kn(t) = K3[β − exp(−t/τr)]2, (8)

where β is given by the initial velocity of the atoms and
K3 depends on λ0 and τr.

As we will see below, equations (6) and (8) for the
temporal evolution of the kinetic energy of the electrons
in the two models provide a proper criterion for identifying
the energy transfer mechanisms.

4 Results and discussion

4.1 State of the target after the impact

We begin the presentation of our results by describing the
state of the target during the moments that follow the
impact. This will be helpful for identifying the important
phases the system goes through as a function of time,
discussed in the next section.

Figure 2 shows the radial, lateral, and vertical (i.e., z)
components of the kinetic energy of the electrons as a func-
tion of time. (In this and other figures, the energy loss is
set to Qe = 80 eV/Å unless otherwise indicated.) Four
stages of evolution can be identified. First, at very short
time (stage I), the radial component possesses a very high
value which corresponds to the radial speed imposed on
the electrons to simulate the effect of the swift ion, as dis-
cussed earlier. This energy has not yet been transferred to
the other two components, which are close to zero (note
the log scale). In stage II, the radial component decreases
rapidly while the lateral and vertical components gain in-
tensity. This rapid drop corresponds exactly to the loss of
energy from the fast electrons crossing the boundaries of
the simulation cell, demonstrating that the electrons are
very rapidly evicted – in about 0.2 tu – from the central re-
gion of the target. Most of the energy initially introduced
in the system is evacuated in this way. Equilibration pro-
ceeds during stage III and is completed in stage IV, that
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2 tu. These results are for Qe = 80 eV/Å.

is after about 1.7 tu. At this point, the electrons are lo-
cally in equilibrium and their velocities follow a Maxwell-
Boltzmann distribution. However, the energy of the elec-
trons which are closest to the trajectory of the ion is still
larger than farther away, and this situation – the presence
of a gradient in the electronic temperature profile – lasts
for at least 20 tu.

We plot in Figure 3 the radial component of the veloc-
ities of the nuclei in a cylindrical shell of inner and outer
radii 5 and 10 Å, respectively, as well as the total effec-
tive charge on those nuclei as a function of time. In the
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Fig. 4. (Color online) Linearized representations of the radial
component of the kinetic energy of the nuclei, Kρ

n, inside a
cylinder of radius 15 Å, as a function of time. The straight
line, which is a guide to the eye, is an exponentially-decreasing
function with a characteristic time of 6 tu.

early moments, the motion of the nuclei is strongly cor-
related to the motion of the electrons: the velocity of the
nuclei reaches a peak at the moment the charge changes
sign. As a result of this correlation, the nuclei, just as the
electrons, develop a strong radial velocity. The thermal re-
laxation of the nuclei is illustrated in Figure 4 for all atoms
within a 15 Å cylinder centered on the impact trajectory,
for three different values of the stopping power; the ra-
dial component of the kinetic energy of the nuclei, Kρ

n, is
normalized by the total kinetic energy (i.e., the sum of all
three components). The three curves are well represented
by an exponentially decreasing function of time that con-
verges to 1/3, with a relaxation time of about 6 tu, as
indicated by the straight line in Figure 4. Thus the radial
velocity dominates the other two components for a period
of about 6 tu, after which equilibrium between all three
components is attained.

The amplitude of the deformations in the system can
be measured by examining the displacements of the nuclei
as a function of time. We plot in Figure 5 the root mean
square displacements of the nuclei (Δr) for several 5-Å
thick cylindrical shells centered on the impact trajectory,
as a function of time. For all shells, Δr increases with time,
goes through a maximum, and tends to 0.2 Å, which cor-
responds to the equilibrium amplitude of vibration. The
position of the maximum in the curves varies at a rate of
about 2.2 Å/tu, which corresponds to the speed of sound
in the system. This is higher than typical values and is a
direct consequence of the small mass of the nuclei we im-
posed. We have calculated the pressure in the system and
found it to follow precisely the motion of the displacement
amplitude. Thus, the ion impact causes a pressure wave
to develop, which proceeds outward from the center.
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Fig. 5. (Color online) Root mean square displacements of the
nuclei, Δr, for different cylindrical shells centered on the im-
pact trajectory, as a function of time. These results are for
Qe = 80 eV/Å.
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To complete this description, we present in Figure 6
the evolution in time of the total potential energy of
the system (ΔVtot), as well as the individual components
(ΔVnn, ΔVne, and ΔVee). We find that the total potential
energy converges rapidly – within about 2 tu – to a value
higher than equilibrium: because of the increased temper-
ature, the spatial degrees of freedom acquire some energy
during this time. As there are no fluctuations afterwards,
it can be inferred that the ionised track has vanished at
this point, which also corresponds to the timescale for elec-
tronic thermal relaxation as we saw above. From these
observations, we conclude that Coulombic energy-transfer

processes occur on a timescale shorter than 2 tu; this will
be important for the discussion that follows.

4.2 Energy transfer mechanisms

We have tried to analyze our results in terms of the models
discussed earlier – Coulomb explosion and thermal trans-
fer – and found that neither could explain the data over
the whole period of time, from the ion impact to the com-
plete thermalization of the system. We note in particular
that, with average atomic displacements of no more than
a fraction of an Å (cf. Fig. 5), one can hardly speak of a
Coulomb explosion. In fact, our calculations suggest that
the energy transfer from the ion to the lattice proceeds
over three distinct phases. First, the electrons move to-
wards the center where a net negative charge develops; this
causes the nuclei to also be attracted towards the center,
i.e., they acquire a negative radial velocity, and this lasts
for about 0.1 tu. Second, the electrons move away from the
impact trajectory, which induces a positive charge in the
central region; the nuclei thus feel a Coulomb repulsion,
causing an outward radial velocity to develop. This pro-
cess takes place with a characteristic timescale of about
2 tu and operates for about 6 tu. Third, and finally, the
electrons attain local equilibrium so that the net charge
along the ion trajectory vanishes; at this point, the trans-
fer of energy to the nuclei occurs by random collisions, i.e.,
Coulomb processes are over.

We describe the energy transfer mechanisms in more
detail in the following sections. The first two processes are
both Coulombic and are discussed together. We note that
the pressure wave brings about no energy transfer between
electrons and nuclei – it involves the nuclei alone.

4.2.1 Coulomb processes

The initial gain in kinetic energy of the nuclei – first at-
tracted towards the center then pushed away – derives
entirely from Coulomb interactions. Since neither process
results in significant displacements of the atoms, the con-
cept of Coulomb explosion is not relevant; it is more ap-
propriate to refer to this phase as Coulomb heating.

We plot in Figure 7a the evolution in time of the kinetic
energy of the nuclei for three different values of the stop-
ping power – panels (b) and (c) zoom on the very short
(0–0.5 tu) and the intermediate (0–2 tu) time windows,
respectively, during which the first two energy-transfer
mechanisms take place. The peaks, marked by the horizon-
tal lines, indicate the times at which the energy-transfer
mechanisms start to slow down.

The first peak occurs at the moment when the elec-
trons escape from the center and the charge in the central
region changes sign (cf. Fig. 3). We plot the peak values
Kn1 as a function of the initial energy deposition in the
system, Qe, in Figure 8. We observe that the height of the
first peak decreases with increasing ion energy. This is a
clear indication that the process giving rise to this peak
is of Coulomb origin, more precisely it results from the
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Fig. 7. (Color online) Kinetic energy of the nuclei, Kn, in a
cylinder of radius 15 Å for three different levels of excitation Qe
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the two Coulomb heating phases for each value of the stopping
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presence of electrons near the impact trajectory. Indeed,
the higher the energy of the ion, the larger the velocities
of the electrons and thus the less time they spend in this
region (viz., inversely proportional to velocity).

The second peak occurs when the “outbound” radial
motion is slowed down by the attractive interaction of the
lattice. If the second energy-transfer phase indeed arises
from Coulomb repulsion, then the kinetic energy of the nu-
clei at the second maximum, Kn2, should be proportional
to the charge in the central region along the impact tra-
jectory. In our model, this charge is in fact proportional to
the number of PEs captured at the boundaries. We show
in Figure 9 that this relation is indeed verified.

Taken together with the correlation between the
charge and the velocity of the nuclei (Fig. 3), those
relations clearly establish that the early phases of en-
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Fig. 9. (Color online) Kinetic energy of the nuclei at the second
maximum, Kn2, as a function of the number of PEs Ns stopped
at boundaries, i.e., for different values of Qe. The straight line,
which is a guide to the eye, shows that the process arises from
Coulomb repulsion.
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Fig. 10. (Color online) Linear representation of the kinetic
energy of the nuclei, Kn, as a function of time, for two values
of the stopping power. The equilibration process is well repre-
sented by an exponential function with a characteristic time of
17 tu, as shown.

ergy transfer from the electrons to the atoms arises from
Coulomb processes. These operate on a timescale of about
2 tu; a thermal transfer regime then takes over as we
demonstrate next.

4.2.2 Thermal transfer

As discussed earlier, the electron gas and the total poten-
tial energy of the whole system exhibit local thermal equi-
librium properties after about 2 tu. Except for the large
radial velocity component, the nuclei also show equilib-
rium. Thus, as of this time, the average kinetic energy of
the nuclei, Kn, should evolve according to equation (6),
which derives from the “thermal spike” model. To demon-
strate this, we plot in Figure 10 the evolution in time
of the nuclear kinetic energy in a cylindrical region of ra-
dius 15 Å. More precisely, we consider the quantity Kn/K
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(where K is the total kinetic energy) which behaves as Kn

if the heat flow out of the considered region is small com-
pared to the energy transfer from the electrons. In a state
of complete thermal equilibrium, the temperatures of the
electrons and the nuclei are equal, and each carries a por-
tion 1/(N + 1) of the total kinetic energy, with N the
number of PEs per atom; here N = 4 so that the kinetic
energy contributions should average 1/5 in equilibrium.
Figure 10 shows that, indeed, Kn/K tends to 1/5.

The characteristic time can be calculated by fitting
the data points to an exponential function, yielding τne =
17 tu; this is also shown in Figure 10 where an exponen-
tial behaviour is clearly visible past the first 2 tu, which
corresponds to the end of the Coulomb regime. (Note that
the variations in this regime appear smaller because of the
use of a log scale; likewise, the variations further down in
time are normal statistical fluctuations.) The value of τne

we find is slightly larger than the expected value of 13 tu
mentioned earlier. The difference is due to the fact that we
neglect here the diffusion of energy which, if taken into ac-
count, would necessarily lead to a shorter relaxation time.

To summarize, the transfer of energy from the im-
pact zone to the nuclei occurs initially through Coulomb
processes. The charge-velocity correlation and the poten-
tial energy variations indicate that the timescale for this
phase is about 2 tu. Thermal processes take over on longer
timescales and equilibrium is reached in 15–20 tu. This
phase is well described by linear transport theory. A tran-
sition regime where both coexist is possible between 1 and
2 tu. These values are order-of-magnitude estimates for a
“generic material”; evidently, the precise numbers will de-
pend on the specific ions and materials under study.

4.2.3 Discussion

According to our model, the transfer of energy from the
impact trajectory to the nuclei occurs initially through
Coulomb heating, then via random collisions, i.e., a ther-
mal process. A number of simplifying assumptions have
been effected in order to reduce the computational load
(i.e., to make the problem tractable); we discuss here the
impact of those simplifications.

To speed up the dynamics, which is dominated by the
electrons, the mass of the ions was set to 0.01 amu. We
found that the Coulomb heating phase lasts at most 2 tu,
and that the atomic displacements induced by this mech-
anism are less than interatomic distances. Increasing the
mass of the ion cores to larger values is unlikely to decrease
the role of Coulomb effects. There might be some effects
on the numerical value of the timescale for the transfer of
energy to the ions, but large changes in the transition time
and relative importance of the Coulomb heating and ther-
mal transfer phases are not expected since these depend
on the electrons dynamics only.

On the basis of our CASP calculations, we have con-
sidered that only weakly bound electrons were affected by
the swift ion. Core electrons, which are closer to the nu-
cleus, cannot be accounted for with the forces we used

here. (A Monte Carlo procedure should be used to this
end [25].) Thus, interactions between fast electrons and
core electrons, such as Auger-like processes, are excluded,
i.e., the efficiency of the fast electrons to carry energy
away from the ion track is overestimated a bit. Likewise,
screening is smaller than would be the case if inner-shell
electrons were considered. Thus, in effect, the timescales
quoted above are upper bounds to the real values.

In spite of the considerable simplifications made in our
model, it is found that our “pseudo-electron” approach
leads to physically correct results. This method, however,
remains to be validated in more realistic materials before
it can be applied to other interesting problems such as
the origin of residual structural damage (i.e., atomic dis-
placements) along the ion trajectory or implemented in a
complete Monte Carlo simulator engine encompassing all
relevant time scales.

5 Conclusion

In conclusion, we have studied in silico the sequence of
mechanisms involved in the energy loss of the energetic
electrons left in the wake of a swift heavy ion travers-
ing a generic solid target. The electron density was repre-
sented by pseudo-electrons which were followed by molec-
ular dynamics, allowing the energy transfer from electrons
to ions to be studied without having to rely on equilibrium
electron-phonon coupling constants. We find that during
the first 2 tu – a tu is about a picosecond –, electrons ini-
tially become concentrated at the center of the ion track
and then altogether rapidly leave this region. A large frac-
tion of the energetic electrons travel several nm’s from the
ion track centre before they start to loose energy. The ions
of the target lattice near the center of the ion track gain
kinetic energy during this same period, through mutual
Coulomb repulsion. The velocities of both electrons and
ions are predominantly radial during this phase, and a
shock wave is initiated which moves radially outward. We
refer to this phase as Coulomb heating – the displacements
of the ions is much less than an interatomic distance. After
the first 2 tu, two thermal processes set in: the velocities of
ions become randomized (instead of predominantly radial)
with a time constant of 6 tu. Also, the energy transfer from
the hot electrons to the ions proceeds and can be charac-
terized as a purely thermal exchange with a characteristic
time of 17 tu. These results indicate that our approach,
whereby the interaction between a large density of highly
excited electrons and the ions on the atomic lattice is mod-
eled by pseudo-electrons, is valid and should be expanded
to more realistic systems.
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